

Total environment simulation

Workload Replay in an agile world

Ulf Heinrich SEGUS Inc

© 2018 SOFTWARE ENGINEERING GMBH and SEGUS Inc.

Agenda

- Testing, virtualizing and simulating the aspects of reliable quality assurance
- Db2 database/object cloning what's state of the art and what's beyond
- XML commander the comprehensive automation of flexibility, covering
 - FTP/routing
 - JCL
 - ISPF file tailoring, panels, messages
 - Db2 commands
- Different flavors of (pro-active) testing and how it can be automated:
 - Anomaly alerting based on Incompatibility Change Indicators (ICIs)
 - Dynamic/static access path change detection e.g. Plan Management
 - Cloning exploiting Backup System
 - Workload-KPI verification using SQL replay and KPI comparison
- Real world experience highlighting the benefits of automated testing

Agile development requires near-time delivery

- Continuous Delivery (CD) is an approach to produce software in short cycles
- CD ensures that changes can be released at any time, considering building, testing and releasing faster and more frequently
- Key is a focus on more incremental updates
- CD requires a straightforward and repeatable deployment

The aspects of reliable quality assurance

- If your shop can't accepted outages for hours/days...
 - Make sure you consider
 - Time to detect anomalies
 - Time to analyze effect and origin
 - Time to evaluate a forward and a backward strategy
 - Time to fix/recover
 - you gotta TEST, TEST, TEST
 - Carefully
 - Thoroughly
 - Rigorously

Db2 comes with the right capabilities to protect your applications

- Always have IFCID 376 look for potential incompatibilities
 - Use APPLCOMPAT to minimize affected SQL from Db2 updates
- Use EXPLAIN to precheck access path changes
- Use BACKUP SYSTEM, or CONSISTENT COPY to have a consistent base for cloning
- Use efficient monitoring traces and be aware of applications being affected by changed behavior

What's required for a virtual environment

<u>1st DDL:</u>

- Which objects are referenced in the SQL
 - SELECT <columns> FROM or <view> or ...
 - WHERE <local predicates>
 - ORDER BY OF GROUP BY OF UNION OF ... < columns>
- Which objects are defined and how
 - INDEX
 - PARTITIONING

What's required for a virtual environment

2nd STATISTICS:

- SYSIBM.SYSCOLDIST
- SYSIBM.SYSCOLSTATS
- SYSIBM.SYSCOLUMNS
- SYSIBM SYSINDEXES
- SYSIBM SYSINDEXPART
- SYSIBM SYSKEYTARGETS
- SYSIBM SYSKEYTGTDIST
- SYSIBM SYSROUTINES
- SYSIBM SYSTABLES
- SYSIBM SYSTABLESPACE
- SYSIBM SYSTABSTATS
- SYSIBM TABLESPACESTATS °
- SYSIBM INDEXSPACESTATS °

(same as SYSCOLUMNS) (same as SYSCOLDIST)

- degree of parallelism only and, after APAR PK62804, also "sometimes" used to bound filter factor estimates
- only for dynamic SQL so far

	E	3	l	
	1			

How to virtualiz	e an environment –	- statistics		
SYSCOLDIST /	<u>SYSCOLSTATS</u>	<u>SYSTABSTATS</u>	SYSINDEXPART	
SYSKEYTGTDIST	COLCARD	CARD	LIMITKEY*	
CARDF	HIGHKEY	CARDF		
COLGROUPCOLNO /	LOWKEY	NPAGES		
KEYGROUPKEYNO				
COLVALUE / KEYVALUE	SYSINDEXES	SYSTABLESPACE	Db2	hannersamed
FREQUENCYF	CLUSTERING*	NACTIVE	Statistics	
HIGHVALUE	CLUSTERRATIO	NACTIVEF	Statistics	
LOWVALUE	CLUSTERRATIOF		ртс	
NUMCOLUMNS /	DATAREPEATFACTORF	<u>SYSTABLESPACESTATS</u>	KI3	
NUMKEYS	FIRSTKEYCARDF	SYSINDEXSPACESTATS		
QUANTILENO	FULLKEYCARDF	TOTALENTRIES		hanoud metatorementers
STATSTIME	NLEAF	TOTALROWS		
	NLEVELS			
<u>SYSCOLUMNS /</u>				
<u>SYSKEYTARGETS</u>	<u>SYSROUTINES</u>	<u>SYSTABLES</u>		
COLCARDF / CARDF	CARDINALITY*	CARDF	* Columna are not	beaucry (2000)
HIGH2KEY	INITIAL_INSTS*	EDPROC*		
LOW2KEY	INITIAL_IOS*	NPAGES	Columns are not	lumer manner of
n/a / STATS_FORMAT	INSTS_PER_INVOC*	NPAGESF		
	IOS_PER_INVOC*	PCTROWCOMP	upuatable	

© 2018 SOFTWARE ENGINEERING GMBH and SEGUS Inc.

How to virtualize an environment – hardware

Production Modelling

Supports optimizer overrides for optimizer relevant system settings

- Zparms
 - SIMULATED_CPU_SPEED
 - SIMULATED_COUNT
- SYSIBM.DSN_PROFILE_ATTRIBUTES*
 - SORT_POOL_SIZE
 - MAX_RIDBLOCKS
 - For bufferpools

Optimizer

*Find DDL in member DSNTIJOS of your SDSNSAMP

How to simulate changes – DDL

How to reliably simulate index changes:

DSN_VIRTUAL_INDEXES*	SYSINDEXES	Description
TBCREATOR	TBCREATOR	Auth. ID of owner/schema of table on which the entry is simul.
TBNAME	TBNAME	Name of the table on which the entry is being simulated
IXCREATOR	IXCREATOR	Auth. ID/schema of the owner of the index
IXNAME	IXNAME	Name of the index to simulate
ENABLE		Whether entry will be considered ('Y') or not ('N')
MODE		Whether the index is being created ('C') or dropped ('D')
UNIQUERULE	UNIQUERULE	Index is uniqueness: D for No (duplicates are allowed); U for Yes
COLCOUNT	COLCOUNT	The number of columns in the key
CLUSTERING	CLUSTERING	Whether the index is clustered ('Y' or 'N')
NLEAF	NLEAF	# of active leaf pages in the index, or -1 if unknown
NLEVELS	NLEVELS	# of levels in the index tree, or -1 if unknown
INDEXTYPE	INDEXTYPE	The index type: '2' - NPSI; 'D' – DPSI
PGSIZE	PGSIZE	Size, in bytes, of the leaf pages in the index: 4K, 8K, 16K, 32K
FIRSTKEYCARDF	FIRSTKEYCARDF	# of distinct values of the first key column, or -1 if unknown
FULLKEYCARDF	FULLKEYCARDF	# of distinct values of the key, or -1 if unknown
CLUSTERRATIOF	CLUSTERRATIONF	Clustering ratio, or -1 if unknown
PADDED	PADDED	Index keys padded for varying-length column data ('Y' or 'N')
COLNO1		Column # of the first column in the index key
ORDERING1		Ordering ('A' or 'D') of the first column in the index key
COLNOn		Column # repeated up to 64
ORDERINGN		Ordering ('A' or 'D') repeated up to 64

SELECT ... FROM ... WHERE ...

*Find DDL in member DSNTIJOS of your SDSNSAMP ! needs to have the same schema name (authid) as the PLAN_TABLE !

How to simulate changes – DDL

Comparing KPIs before and after Index creation clearly shows whether an index helps or Index maintenance costs for table: IQA0610.IQATW005 hinders Db2.

How to simulate changes – statistics

- Relationships exist among certain columns of certain tables:
 - Columns in SYSCOLUMNS, SYSCOLDIST, and SYSINDEXES
 - CARDF (SYSCOLDIST): CARDF is related to COLCARDF and FIRSTKEYCARDF and FULLKEYCARDF. It must be at minimum:
 - A value between FIRSTKEYCARDF and FULLKEYCARDF if the index contains the same set of columns
 - A value between MAX(colcardf of each col) and the product of all the columns COLCARDFs in the group
 - CARDF (SYSTABLES): CARDF must be equal or larger than any other cardinalities, such as COLCARDF, FIRSTKEYCARDF, FULLKEYCARDF, and CARDF in SYSCOLDIST
 - FREQUENCYF and COLCARDF or CARDF: The number of frequencies collected must be less than or equal to COLCARDF for the column or CARDF for the column group
 - FREQUENCYF: The sum of frequencies collected for a column or column group must be less than or equal to 1
- Refer to chapter 37 of: "Managing Performance"

Db2 Statistics

RTS

How to simulate changes – hardware

- CPU simulation
 - Check a faster newer machine (Upsize)
 - Check a slower older machine (Downsize)
- ZPARM simulation
 - Change size of SRTPOOL
 - Change size of RID Pool
 - Change size of data cache or Star Join Pool
- BUFFERPOOL
 - Change size of any BUFFERPOOL

Optimizer

48

Db2 database/object cloning

Application

Indexspaces

Application

Tablespaces

-Tables

-Views -Aliases

-Triagers

-Stogroups

Routines

-Permissions -Masks

-Grants

-RI

-Svnonvms

- Instant Cloning for clone based code level checks:
 - Scope of Cloning: Object level

Application

Indexspace

Application

Tablespace

-Sequences -Databases

-Trusted

-Distinct

Data

-MQT

-Roles

-Variables

Context

- Fully exploiting instant copy technology (e.g. Flashcopy)
- Supports DDL and/or data cloning
- Flexible include/exclude of dependent objects
- Powerful renaming capabilities

DSNDB01

DSNDB06

DSNDB04

Db2 database/object cloning

Instant Cloning for clone based code level checks:

Active

LOGS

Archive

LOGS

Scope of Cloning: Subsystem level

Application

Indexspaces

Application

Tablespace

ICF*

Catalogs

- Fully exploit instant copy technology (e.g. Flashcopy – ESS, Timefinder, Snapshot)
- DS←→NDS, as well as cross-version cloning possible
- Highly customizable and fully automated if driven by scripts, like a XML scenario scheme

Db2 database/object cloning

- Required Steps
 - Clone your source data
 - Dump via ADRDSSU
 - Split Mirror systems and break the mirror
 - FLASH Copy / Disk dump and then Restore
 - Any other method...
 - Stop the target system
 - Restore the source data (using the new ssid vcat)
 - Rename (if naming should be different and/or target is not isolated from source)
 - Adjust LOGs, BSDSs, DSNZPARM, DSNHDECP
 - Start target
 - Execute NEWCAT to adjust Db2 object names

- XML controlled cloning
 - Due to its nature XML is a fully flexible, human- and machine-readable language
 - It may, or may not have elements and/or attributes, but has to be well-formed only
 - Since a complex cloning procedure may, or may not have individual steps, including some very customer specific tasks, XML is a perfect choice to drive a cloning scenario

```
<name>validate datasets</name>
<description>Check installation specific datasets</description>
</menuitem>
<description>Get all needed information</description>
</menuitem>
<description>Get all needed information</description>
</menuitem>
<description>Stop D82</name>
<description>Stop target D82</description>
</menuitem>
<description>Stop target D82</description>
</menuitem>
<description>Restore</name>
<description>Restore volumes</description>
</menuitem>
</menuit
```


- FTP and Routing
 - Usually source and target subsystem reside on different LPARs, machines, or even locations
 - A fundamental part of cloning automation is to take care of routing and transferring required data, no matter if being logged in on source, or target
 - Temporary/Workfile datasets are shared via FTP
 - Commands are routed by adding the system name ROUTE LPRS,/F DB2S,STOP DB2
 - Jobs can be route either via ROUTE XEQ LPRSNJE, Or SCHENV=LPRSDB2S

Db2 database/object cloning

- JCL, Panels, Commands, Messages
 - ISPF tailoring services are a great vehicle to prepare skeleton JCL, panels, commands and messages for automation, but keep the flexibility for a variety of individual systems and clone runs

Db2 database/object cloning

- A clone-environment is designed for automated testing and should be isolated and automatically scratched afterwards
- However, since we have potentially sensitive production data, consider auditing the entire system, like
 - SELECTs (against sensitive data)
 - Modifications (INS/UPD/DEL)
 - DDL
 - DCL
 - Utilities
 - Commands
 - Assignment, or modification of a user ID/authorization especially privileged users
- You may want to terminate the system when unauthorized access occurs

The scope and the environment for automated testing can be chosen flexibly, but of course SQL replay is intended for a test environment.

As a result, the testing scope and associated Cost matches the needs. E.g. for a non-critical system with a small change to test a quick access path precheck might be enough. For a highly critical financial OLTP system, facing a major Db2 update, we better run a fully automated clone with a complete replay test that covers multiple workload sets over night.

Automated testing – anomaly allerting

In recent versions, IBM has modified the behavior of certain Db2 functionality

- Built-in Functions (BiFs)
- Reserved Words
- SQL Return Codes
- Deprecated Functionality

It is important that you are aware of, and track, the incompatibilities that may cause issues/problems... why?

- Applications no longer function
- Applications function differently
- The results of your SQL SELECT statements can change

Access path change detection

- (RE-)BIND EXPLAIN only explains based on static SQL optimization rules
 - A feature to populate details of an existing, or a new package without affecting the access path
 - Good for gathering explain data when previously bound with EXPLAIN(NO)
 - Reliable way to prescreen access paths for static packages
- EXPLAIN STATEMENTCACHE explains dynamic statements in the DSC
- EXPLAIN ALL <stmt> explains based on dynamic SQL optimization rules
 - A feature to populate details of a new statement without affecting the access path
 - Reliable way to prescreen access paths for dynamic SQL
 - E.g. RTS # pages/rows = 0
 - \rightarrow EXPLAIN: tablespace scan
 - \rightarrow BIND EXPLAIN(ONLY): index access

Access path change detection

Automatically and reliably check access path changes

Access path change detection

 Access Path Check: Static & Dynamic SQL

C 🖊 🖥 🔤 🗠

	Serviceunits Ne	Serviceunits Old	Impact	DSC STMT ID	Section Number	STMT No.
Improved AP progs: 5		85	DEGRADED	2547	13	2547
		152	DEGRADED	796	2	796
Changed AP progs: 6		152	DEGRADED	804	3	804
		152	DEGRADED	812	4	812
		152	DEGRADED	820	5	820
		152	DEGRADED	671	2	671
		152	DEGRADED	679	3	679
Unchanged AP progs Ochange		152	DEGRADED	687	4	687
actExpert™ for DB2 z/OS, © SOFTWARE ENGINEERING GmbH, 2004-2017	⊡Bind Impa	152	DEGRADED	695	5	695
46	1	130	DEGRADED	3	3	3
34	2	95	DEGRADED	4	4	4
29	1	82	DEGRADED	5	5	5
53	1	149	DEGRADED	6	6	6
60	16	171	IMPROVED	968	7	968
62	10	174	IMPROVED	1167	9	1167
63	10	178	IMPROVED	235	1	235
53	191	150	IMPROVED	1194	2	1194
8	23	21	IMPROVED	2409	7	2409
62	191	175	IMPROVED	1194	2	1194
						c

Workload Capture/Replay with KPI verification:

 \rightarrow Workload Capture/Replay adds application level testing and automates executing sets of captured workload.

- Highly efficient IFCID (OPx) capturing to catch SQL for automated execution in the isolated, cloned environment.
- Workload sets can be saved to represent quarter's end, year's end and other specific workload patterns.
- Tested workload is automatically compared on a KPI level (e.g. # of getpages, rows returned, rows processed...) to report only anomalies.

- Using IFCIDs along with OPx buffers delivers in-depth information without the overhead of SMF processing
- Correlation headers add detailed authentication data
- IFCID 316* and 318 externalize data from the Dynamic Statement Cache (DSC), even when a flushing situation occurs (LRU, RUNSTATS, ALTER, DROP, REVOKE, ...) (+317* for the full SQL statement)
- IFCIDs 400* and 401 externalize data from the EDM pool let's call it the Static Statement Cache – even when a flushing situation occurs (EDM pool is full) (+SYSPACKSTMT for the full SQL statement)

*This IFCID is not really an IFCID but more of a "switch" to enable externalization of static SQL metrics

- Counters
 - More than 100 KPIs, like
 - executions, getpages, IX/TS scans, rows processed/examined, ...
- Zero-Counters
 - Failure indicators that should always be zero, like
 - RID list overflow, RID list append, RID pool failure, ...
- Timings
 - More than 80 KPIs, like
 - CPU/elapsed time, claim/lock/latch wait time, thread read/write
- Identification
 - About 20 IDs, like
 - SQL ID, end user, workstation, transaction, ...
- Environmental
 - Metadata, like collection ID, currentdata, isolation level, ...

- SQL workload that has been captured can be divided into two groups:
 - 1. Re-executable statements
 - SELECT A, B, C FROM MYTABLE WHERE B = 'B'
 - 2. Non re-executable statements
 - SELECT A, B, C FROM MYTABLE WHERE B = ?
 - SELECT A, B, C FROM MYTABLE WHERE B = :B
- SQL with literals and host variables needs to be prepared for reexecution

In dynamic SQL statements host variables are represented as question marks (parameter markers). There are *typed* and *untyped* parameter markers.

- Typed parameter markers are specified with their target data type (via CAST).
- Untyped parameter markers are specified in the form of a single question mark.

To make non re-executable statements executable, we replace parameter markers and host variables with real values, considering the characteristics of the affected column.

A simple shot is a character = 'A' and numeric = 5 replacement. A more sophisticated solution checks catalog statistics for more solid replacements.

- The captured statements can (and should) represent various workloads to cover a representative scope
 - Month's end processing
 - Quarter's end processing
 - Year's end processing
 - Typical OLTP
 - Typical batch

... and can be bundled in workload sets to be individually chosen for testing.

- Executing the captured statements dynamically doesn't require the associated applications
 - There are typically no static programs/packages as part of the Db2 clone
- Consider parameters allowing to chose the number of executions per statement
- Ignore certain SQL errors/warnings, like
 - Duplicate key
 - Object exists
 - Grantee already has the permission
 - **+100**
 - ...

- Before starting the mass execution, verify to be in our own cloned and encapsulated environment!
- The entire execution needs to be monitored (using OPx based, highlyefficient capturing technology) to gather comparison metrics and KPIs, like
 - CPU consumption
 - Access path pattern
 - Rows processes/examined
 - ..

for a before and after comparison of changes, like:

- New application release
- System changes
- Db2 APAR/PTF/new Db2 12 modification level
- Environment/hardware changes

The big benefit of KPI verification is the ability to handle massive amounts of testing without the overhead of having to review individual executions.

╷╴┛╴

Drill down capabilities allow looking into details, when anomalies are detected

													1	
Co	ntinuou	sDelivery DeploymentCheck	🛛 🔓 SQL Worklo	adExpert - Compare	view								- 8	
3 占 [BIX	🛅 WLX 🗙												
Run	informa static	2018-04-12-12.10.25.5	i55879 WLX	before 2018-04-1	Functio 12-11.41.59.574140 V12R11	n level Catalo	g level IM500							
	dynamio	2018-04-12-12.10.09.9	955877 WLX	after 2018-04-1	12-12.04.38.458404 V12R1I	V12R	IM500							
CDDC	C results	summary												
WLX	BIX		1			1						1		
Тур	e	WLX-Key	Sum of CPU Time	Sum of Executions	Sum of Number of Statements	Sum of GETPAGES	Sum of Rows examined	Sum of Rows processed	Sum of Index scans	Sum of WF and Tablespace Scans	Sum of Elapsed Time	Sum of Wait Log Writer	Sum of Wait Synchronous IO	
Tot	al	2018-04-12-11.41.59.574140	26423	27	142	137	36	12	36	1	37205	1585	1001	
Tot	al	2018-04-12-12.04.38.458404	27323	27	142	137	36	12	36	1	31993	1098	1130	
Dyr	namic	2018-04-12-11.41.59.574140	25307	13	133	137	36	12	36	1	36055	1585	1001	
Dyr	namic	2018-04-12-12.04.38.458404	26150	13	133	137	36	12	36	1	30798	1098	1130	
Stat	tic	2018-04-12-11.41.59.574140	1116	14	9	0	0	0	0	0	1150	0	0	
Stat	tic	2018-04-12-12.04.38.458404	1173	14	9	0	0	0	0	0	1195	0	0	
													and the second se	

Drill down capabilities allow looking into details, when anomalies are detected

	VLX 🗙								
un information									
						Function level Catalog level			
IX static	2018-04-12-12.10.2	018-04-12-12.10.25.555879		WLX before	2018-04-12-11.41.59.574140	V12R1M500	V12R1M500		
IX dynamic	2018-04-12-12.10.0	9.95587	7	WLX after	2018-04-12-12.04.38.458404	V12R1M501	V12R1M500		
DC results sumn	nary								
IX BIX									
		All	Invalid	Inoperative					
Packa	iges Analyzed	182	0	0					
	Not analyzed	233	3	0					
	Improved	2	0	0					
	Worsened	4	0	0					
	Changed	2	0	0					
	Unchanged	174	0	0					
Statements st	atic Analyzed	1706	0	0					
Statements st	Not analyzed	1503	0	0					
	Improved	2	0	0					
	Worsened	4	0	0					
	Changed	5	0	0					
	Unchanged	1695	0	0					
tatements dyna	mic Analyzed	80	0	0					
	Not analyzed	0	0	0					
	improved		0	0					
	worsened	2	0	0					
	Changed	- 2	0	0					

BIF Usage is a major area of concern and occurs quite often. The ability to test multiple sets of workloads, detects even quarters-end, or years-end query issues before they occur in production.

WorkloadExpert : BIF Us	age Drill-Down1 🕅	3				
BIF Usage Drill-Down1		~	C 🕖 🖊 🔒 🗙	è 4	S0I ZD00QA1B ✓	
					-	
Key	Collection ID	Package	ICI number	Count	Reason	
-03-04-13.48.32.142444	DSNESPUR	DSNESM68	1	12	DB2 9 CHAR Usage	L _{est} appartente entre
-03-04-13.48.32.142444	DSNESPUR	DSNESM68	5	8	Keyword CUBE used as unqualified UDF	
						-