
© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 1

Understand, manage and love
certificates in z/OS and USS

Ulf Heinrich
SOFTWARE ENGINEERING

u.heinrich@seg.de

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 2

Agenda

§ General basics
§ Where/what are certificates used for?

§ How is it used/realized?
§ Real examples from the ZOWE ecosystem,

§ as well as z/OSMF, UMS, SQLDI, Db2
§ Managing certificates in USS and z/OS
§ Analyzing certificate issues

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 3

General Basics

§ Like an official identity card in the analog world, a certificate
reliably proves an identity in the digital world to
§ Protect from fake identities
§ Refer to an authority that proves the identity
§ Acknowledge the data by the electronic signature of the

authority
§ Relate a public key (owner) to an identity
§ Associate a public key to the identity data of

§ a person
§ an organization
§ a device

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 4

General Basics

§ Digital certificates, or public key certificates, or identity certificates
are used to identify and validate an unknown origin and to
communicate securely with it

1. It includes information about the owner/subject,
 plus typically a certificate of the entity/issuer
 that has verified the owner/subject

2. It includes a public key that allows asymmetric, one-way
encryption
§ The public key is intended to be shared

§ A Public key enables anybody to encrypt content
§ Only the corresponding private key of a public/private

key pair can decrypt the content

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 5

General Basics

Conclusion:
à A certificate is an electronic document used to

1. prove an identity and
2. to provide a key
which is part of the document

à Once a certificate is verified to be trustworthy the validity proves
§ sender/integrity of an e-mail (S/MIME)
§ authenticity of a payment card for transactions (EMV)
§ owner/integrity/genuine of apps/binaries (code signing)
§ Document, eID, role, …
§ device (domain/host/IP) (TLS/SSL)

§ Further, the public key can be used for secure communication
with a
§ Person, or organization (e.g. e-mail, messaging)
§ Device (https, ftps, sftp, ssh, VPN, RDP…)

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 6

e-mails

Where/what are certificates used for?

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 7

software

Where/what are certificates used for?

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 8

documents

Where/what are certificates used for?

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 9

Where/what are certificates used for?

websites

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 10

The technology is always the same, but today we focus on secure
client – server communication:

1. Assure that a subject is really the one it supposes to be.
2. Assure that the information exchanged isn‘t manipulated.
3. Assure that the communication is treated confidentially.

Where/what are certificates used for?

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 11

How is it used/realized?

Let’s have a closer look at secure client – server communication:

§ A standardized process,…
§ 1987 Secure Data Network System (SDNS) project initiated
§ 1996 using SSL 3.0 under governance of the IETF to develop

internet-standards
§ since 1999 continuously enhanced as transport layer security

(TLS)
§ … that anybody understand/supports

§ Any current client (e.g. browser, desktop, smartphone) and
server (e.g. mail, web, database) supports secure
communication via the X.509 based mechanisms
§ TLS handshake
§ TLS record

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 12

How is it used/realized?

Secure client – server communication starts with a secure connection
request, (e.g. https, ftps, …) and often requires to specify a secure
port:
 https://s0w1.dus.seg.de:10443/zosmf

1. Connection request from a client to a server
2. Server replies with its certificate
3. Verification of the replying server and its trustworthiness by the

client
4. Connection dependent handshake of the encryption between

client and server
Optionally: Certificate authentication of the client
 Verification of the client by the server
5. Start encrypted communication

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 13

How is it used/realized?

After we’ve received the certificate (including a key) from a server
how is the information verified to guarantee its identity?

§ A certificate alone does not guarantee the identity shown, nor its
trustworthiness!
§ An identity can only be proved by a trusted entity
§ Trustworthiness can only be judged by the communication

partner

§ So, how can a client know if the communication partner is safe and
trustworthy?

1. Either the provided certificate is individually categorized
trustworthy,

2. or a superior certificate authority (CA) is trusted that confirms
the identity shown (certificate chain)

This is the major concept used throughout X.509-based TLS.

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 14

How is it used/realized?

Who is a superior certificate authority (CA)?

§ Higher instance in a certificate chain of trust (intermediate, or root)
§ Reputable, commonly trusted organizations*

§ May assign limited duties to external identity authorities
§ Companies usually have an “internal” CA to simplify certificate

management
§ Validates the content of a certificate (signing request - CSR) and can

issue/revoke certificates inheriting trustworthiness
à Certificates signed by a trusted CA are automatically trusted!

*The Certification Authority Browser Forum
(CA/Browser Forum) is a voluntary gathering
of certificate Issuers and suppliers of
internet browser software and other
applications that use certificates.

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 15

How is it used/realized?

Who is a superior certificate authority (CA)?

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 16

How is it used/realized?

Besides the verification of an identity we want to initiate the secure
connection, but

§ Client and server may not know each others yet
§ Communicating securely requires that both
 parties are able to encrypt and to decrypt
 the information sent/received

BUT:
§ Without a common (symmetric) encryption key, no encryption!
§ If they’d negotiate a key to start encryption, it would need to

be unencrypted and someone else on the network could use a
network sniffer, steal the key and compromise the encryption

The solution:
à Client and server negotiate the symmetric
 encryption key using asymmetric encryption

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 17

How is it used/realized?

§ TLS encryption is based on X.509 certificates that identify the owner
and provide the public key from a public/private key pair

§ The public key coming with this certificate can be used to initiate
asymmetric encrypted communication
§ Therefore, the public key provided along with the certificate at

connection request is used by the recipient to check integrity
and create and return an encrypted pre-master-key

§ The encrypted pre-master-key can only be decrypted with the
appropriate private key, which is then used for the further
encryption

à Public key can encrypt, but only private key can decrypt
(asymmetric encryption)

§ Due to the fact that the private key should never ever be accessible
by someone else but the owner, certificates are typically generated
manually by the owner, or as part of an installation by the owner
(like ZOWE does):
§ E.g.:
 openssl req -x509 -newkey rsa:4096 -keyout key.pem
 out cert.pem OR certsigreq.csr -days 365

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 18

How is it used/realized?

TLS overview:

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 19

How is it used/realized?

z/OSMF, ZOWE and Db2 work exactly this way:

1. Connection request against z/OSMF, ZOWE, Db2 (secure port!)
2. Reply by z/OSMF, ZOWE, Db2 with its certificate (incl. certificate

chain with a certificate authority if applicable)
3. Trustworthiness verification of the certificate, resp. of the

root/intermediate certificate authority
4. Generation and return of the pre-master-key by the client using

the servers public key
5. Generation of the encryption of an individual connection and start

of the encrypted communication
§ Manipulation can be detected by an individual message

authentication code

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 20

Real examples from the ZOWE ecosystem
§ The standardized certificate based on TLS is used
§ Certificates are managed either in a KEYSTORE/TRUSTSTORE, or…

§ https://docs.zowe.org/stable/user-guide/configure-
certificates-keystore

§ by RACF KEYRINGs
§ https://docs.zowe.org/stable/user-guide/configure-

certificates-keyring

§ More detailed information about certificate
generation/management for application development extending
ZOWE is available at
§ https://docs.zowe.org/stable/extend/extend-apiml/onboard-

plain-java-enabler/#api-security

Reminder: It‘s all about trustworthiness!

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 21

Real examples from the ZOWE ecosystem
§ The certificate store is specified in the ZOWE configuration

(zowe.yaml, formerly instance.env), as a java keystore/truststore,
or…
certificate:
 keystore:

 type: PKCS12
 file: /zowe/keystore/localhost/localhost.keystore.p12

 password: password
 alias: localhost
 truststore:

 type: PKCS12

 file: /zowe/keystore/localhost/localhost.truststore.p12
 password: password

pem:

 key: /zowe/keystore/localhost/localhost.key
 certificate: /zowe/keystore/localhost/localhost.cer
 certificateAuthorities: /zowe/keystore/local_ca/local_ca.cer

verifyCertificates: STRICT

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 22

Real examples from the ZOWE ecosystem
§ … as a RACF keyring

certificate:

 keystore:

 type: "JCERACFKS"

 file: "safkeyring:////ZWESVUSR/ZOWEKEYS"
 password: "password"

 alias: "ZWESRV"

 truststore:

 type: "JCERACFKS"

 file: "safkeyring:////ZWESVUSR/ZOWEKEYS"

 password: "password"

 pem:
 key: ""

 certificate: ""

 certificateAuthorities:
"safkeyring:////ZWESVUSR/ZOWEKEYS&SEGROOTCA"

verifyCertificates: "STRICT"

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 23

Real examples from the ZOWE ecosystem

§ KEYSTORE:
§ Stores its own certificate

§ TRUSTSTORE
§ Stores trusted certificates

§ RACF KEYRING
§ Stores both

Ring:
ZOWEKEYS

Certificate Label Name Cert Owner USAGE DEFAULT
-------------------------------- ----------- -------- --------
SEGROOTCA CERTAUTH CERTAUTH NO
ZWESRV ID(ZWESVUSR) PERSONAL YES

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 24

Real examples from UMS and z/OSMF
§ IBM Unified Management Server uses ZOWE’s

keystore/truststore/keyring by default, unless you specify
something else in UMS’s parmlib member
 certificate:
 allowSelfSigned: true

 truststore:

 location: "safkeyring:////ZWESVUSR/IZPRING"

 type: "JCERACFKS"

 keystore:

 location: "safkeyring:////ZWESVUSR/IZPRING"
 type: "JCERACFKS"

 alias: "UMSSRV"

§ For z/OSMF you can specify the RACF keyring in the IZU PARMLIB
member
(…)

KEYRING_NAME('ZOSMFKEYS')

(…)

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 25

Real examples from SQLDI and Db2
§ For SQL Data Insights you are prompted to specify the RACF keyring

when running the installation script sqldi.sh
Enter your keystore information > SQLDIID.SQLDIKEYRING

§ For Db2 you have to configure the TLS setup via PAGENT
TTLSRule DD10SecureServer
{ LocalPortRange 15151

 JobName DD10DIST
 Direction Inbound
 TTLSGroupActionRef DD10SecureGrpAct
 TTLSEnvironmentActionRef DD10SecureEnvAct

 TTLSConnectionActionRef DD10SvrAuthConn
}
TTLSGroupAction DD10SecureGrpAct

{ TTLSEnabled On
 Trace 15
}
TTLSEnvironmentAction DD10SecureEnvAct

{ TTLSKeyRingParms
 { Keyring SEGDB2KEYRING
 }
 (…)

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 26

Managing certificates in USS and z/OS

How to manage keystores, truststores, keyrings?
§ A keystore/truststore can be managed using the keytool

>keytool
Key and Certificate Management Tool
Commands:

 -certreq Generates a certificate request
 -changealias Changes an entry's alias
 -delete Deletes an entry
 -exportcert Exports certificate

 -exportseckey Export a batch of secret keys
 -genkeypair Generates a key pair
 -genseckey Generates a secret key

 -gencert Generates certificate from a certificate request
 -importcert Imports a certificate or a certificate chain
 -importpass Imports a password
 -importkeystore Imports one or all entries from another keystore

 -importseckey Import a batch of secret keys
 -keypasswd Changes the key password of an entry
 -list Lists entries in a keystore
 -printcert Prints the content of a certificate

 -printcertreq Prints the content of a certificate request
 -printcrl Prints the content of a CRL file
 -storepasswd Changes the store password of a keystore

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 27

Managing certificates in USS and z/OS

How to manage keystores, truststores, keyrings?
§ A keyring can be managed using RACF

§ Services option menu
 RACF - SERVICES OPTION MENU
OPTION ===>

SELECT ONE OF THE FOLLOWING:
 1 DATA SET PROFILES

 2 GENERAL RESOURCE PROFILES
 3 GROUP PROFILES AND USER-TO-GROUP CONNECTIONS
 4 USER PROFILES AND YOUR OWN PASSWORD

 5 SYSTEM OPTIONS
 6 REMOTE SHARING FACILITY
 7 DIGITAL CERTIFICATES, KEY RINGS, AND TOKENS

 99 EXIT

§ RACDCERT (Manage RACF digital certificates)
“Use the RACDCERT command to install and maintain digital
certificates, key rings, and digital certificate mappings in
RACF."

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 28

Managing certificates in USS and z/OS

§ Using KEYSTORE/TRUSTSTORE with self-signed certificates might be
ok for testing,
👍 Easy setup without additional RACF
👍 Unix/USS OPENSSL and KEYTOOL usage as usual
👎 Has to be trusted by the ZOWE user
👎 No centralized certificate management

§ but at the end, a RACF KEYRING with company CA-signed
certificates is a better choice
👍 Centralized z/OS/USS certificate management
👍 Implicitly trusted for all employers
👎 Requires RACDCERT knowledge and authorization
👎 Some (Db2) require additional PAGENT definition

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 29

Managing certificates in USS and z/OS

RACDCERT example of a certificate + company CA

1. Create a company CA to make any of your certificates trustworthy
 //GENCACRT EXEC PGM=IKJEFT01,REGION=0M
 //SYSTSPRT DD SYSOUT=*
 //SYSTSIN DD DDNAME=RACF
 //RACF DD DATA,DLM=$$,SYMBOLS=JCLONLY

 RACDCERT GENCERT CERTAUTH +
 SUBJECTSDN(+
 CN('SOFTWARE ENGINEERING ROOT CA') +

 OU('DEVELOPMENT') +
 O('SOFTWARE ENGINEERING GMBH') +
 L('DUESSELDORF') +
 SP('NORTH RHINE WESTPHALIA') +

 C('DE')) +
 SIZE(2048) +
 NOTAFTER(DATE(2033-01-07)) +

 WITHLABEL('SEGROOTCA') +
 KEYUSAGE(CERTSIGN)
 $$

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 30

Managing certificates in USS and z/OS

RACDCERT example of a certificate + company CA

2. Create a certificate signed with the CA created before
//GENSVCRT EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD DDNAME=RACF

//RACF DD DATA,DLM=$$,SYMBOLS=JCLONLY

 RACDCERT GENCERT ID(IZUSVR1) +

 SUBJECTSDN(+

 CN('ZOSMF MANAGEMENT SERVICE') +

 OU('DEVELOPMENT') +
 O('SOFTWARE ENGINEERING GMBH') +

 L('DUESSELDORF') +

 SP('NORTH RHINE WESTPHALIA') +

 C('DE')) +

 SIZE(2048) +

 NOTAFTER(DATE(2025-04-02)) +
 WITHLABEL('IZUSRV') +

 KEYUSAGE(HANDSHAKE) +

 ALTNAME(IP(192.168.9.98) +

 DOMAIN('S0W1.DUS.SEG.DE')) +

 SIGNWITH(CERTAUTH LABEL('SEGROOTCA'))

$$

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 31

Managing certificates in USS and z/OS

RACDCERT example of a certificate + company CA

3. Create a keyring for the certificates created
//GENSVCRT EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD DDNAME=RACF

//RACF DD DATA,DLM=$$,SYMBOLS=JCLONLY

 RACDCERT ADDRING(ZOSMFKEYS) ID(IZUSVR1)

 SETROPTS RACLIST(DIGTRING) REFRESH

$$

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 32

Managing certificates in USS and z/OS

RACDCERT example of a certificate + company CA

4. Add the certificates created to the keyring created
//GENSVCRT EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD DDNAME=RACF

//RACF DD DATA,DLM=$$,SYMBOLS=JCLONLY

 RACDCERT CONNECT(CERTAUTH LABEL('SEGROOTCA') +

 RING(ZOSMFKEYS)) +

 ID(IZUSVR1)

 RACDCERT CONNECT(ID(IZUSVR1) +
 LABEL('IZUSRV') +

 RING(ZOSMFKEYS) +

 USAGE(PERSONAL) DEFAULT) +

 ID(IZUSVR1)

$$

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 33

Managing certificates in USS and z/OS

RACDCERT example of a certificate + company CA

5. Permit access to the keyring created
//GENSVCRT EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD DDNAME=RACF

//RACF DD DATA,DLM=$$,SYMBOLS=JCLONLY

 RDEFINE RDATALIB IZUSVR1.ZOSMFKEYS.LST UACC(NONE)

 PERMIT IZUSVR1.ZOSMFKEYS.LST CLASS(RDATALIB) ID(IZUSVR1) +

 ACCESS(CONTROL)

/* Uncomment this command to allow other user to access key ring ... */
/* PERMIT IZUSVR1.ZOSMFKEYS.LST CLASS(RDATALIB) ID(<USER>) + */

/* ACCESS(READ) */

 SETROPTS RACLIST(RDATALIB) REFRESH

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(IZUSVR1) +

 ACCESS(READ)
 PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(IZUSVR1) +

 ACCESS(READ)

 SETROPTS RACLIST(FACILITY) REFRESH

$$

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 34

Analyzing certificate issues

Trustworthy or not, that's the question!

 How to fix this???

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 35

Analyzing certificate issues

Trustworthy or not, that's the question!

1. Make sure the host, or IP is correct!

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 36

Analyzing certificate issues

Trustworthy or not, that's the question!

2. Verify the certificate

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 37

Analyzing certificate issues

Trustworthy or not, that's the question!

2. Verify the certificate’s content

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 38

Analyzing certificate issues

Trustworthy or not, that's the question!

2. Verify the certificate’s content

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 39

Analyzing certificate issues

Trustworthy or not, that's the question!

2. Verify the certificate’s content

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 40

Analyzing certificate issues

Trustworthy or not, that's the question!

2. Verify the certificate’s content

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 41

Analyzing certificate issues

Trustworthy or not, that's the question!

3. Verify that the CA (or the certificate) is trusted

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 42

Analyzing certificate issues

Trustworthy or not, that's the question!

3. Verify that the CA (or the certificate) is trusted

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 43

Analyzing certificate issues

Trustworthy or not, that's the question!

3. Verify that the CA (or the certificate) is trusted – add it, if missing

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 44

Analyzing certificate issues

Trustworthy or not, that's the question!

3. Verify that the CA (or the certificate) is trusted – add it, if missing

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 45

Analyzing certificate issues

Trustworthy or not, that's the question!

3. Verify that the CA (or the certificate) is trusted – add it, if missing

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 46

Analyzing certificate issues

Trustworthy or not, that's the question!

3. Verify that the CA (or the certificate) is trusted – add it, if missing

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 47

Analyzing certificate issues

Trustworthy or not, that's the question!

3. Verify that the CA (or the certificate) is trusted – add it, if missing

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 48

Analyzing certificate issues

Trustworthy or not, that's the question!

3. Verify that the CA (or the certificate) is trusted – add it, if missing

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 49

Analyzing certificate issues

Trustworthy or not, that's the question!

3. Verify that the CA (or the certificate) is trusted – add it, if missing

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 50

Analyzing certificate issues

Trustworthy or not, that's the question!

3. Verify that the CA (or the certificate) is trusted – add it, if missing

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 51

Analyzing certificate issues

Trustworthy or not, that's the question!

3. Verify that the CA (or the certificate) is trusted – add it, if missing

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 52

Analyzing certificate issues

Trustworthy, or not, that's the question!

But what can you do if it’s not a browser client, but an API, like a
RESTful service?

 à OPENSSLs tls debugging is your friend!

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 53

Analyzing certificate issues
openssl s_client -connect s0w1.dus.seg.de:15151 -tlsextdebug

CONNECTED(00000005)
TLS client extension "renegotiation info" (id=65281), len=1

0001 - <SPACES/NULS>
depth=1 C = DE, ST = NORTH RHINE WESTPHALIA, L = DUESSELDORF, O =
SOFTWARE ENGINEERING GMBH, OU = DEVELOPMENT, CN = SOFTWARE
ENGINEERING ROOT CA
verify error:num=19:self signed certificate in certificate chain
verify return:0

write W BLOCK

Certificate chain

0 s:/C=DE/ST=NORTH RHINE WESTPHALIA/L=DUESSELDORF/O=SOFTWARE
ENGINEERING GMBH/OU=DEVELOPMENT/CN=DB2 SECURE DISTRIBUTION SERVICE

i:/C=DE/ST=NORTH RHINE WESTPHALIA/L=DUESSELDORF/O=SOFTWARE
ENGINEERING GMBH/OU=DEVELOPMENT/CN=SOFTWARE ENGINEERING ROOT CA
1 s:/C=DE/ST=NORTH RHINE WESTPHALIA/L=DUESSELDORF/O=SOFTWARE
ENGINEERING GMBH/OU=DEVELOPMENT/CN=SOFTWARE ENGINEERING ROOT CA

i:/C=DE/ST=NORTH RHINE WESTPHALIA/L=DUESSELDORF/O=SOFTWARE
ENGINEERING GMBH/OU=DEVELOPMENT/CN=SOFTWARE ENGINEERING ROOT CA

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 54

Analyzing certificate issues
Server certificate

-----BEGIN CERTIFICATE-----
MIIEgDCCA9igAwIBAgIBBDANBgkqhkiG9w0BAQsFADCBpDELMAkGA1UEBhMCREUx
HzAdBgNVBAgTFk5PUlRIIFJISU5FIFdFU1RQSEFMSlHjjO85BgNVBAcTC0RVRVNT
RUxET1JGMSIwIAYDVQQKExlTT0ZUV0FSRSBFTkdJTkVFUklORyBHTUJIMRQwEgYD
VQQLEwtERVZFTE9QTUVOVDEkMCIGA1UEAxMbU09GVFdBUkUgRU5HSU5FUklORyBS
T09UIENBMB4XDTIzMDExNTIzMDAwMFoXDTI1MDQwMTIyNTk1OVowgagxCzAJBgNV
BAYTAkRFMR8wHQYDVQQIExZOT1JUSCBSSElORSBXRVNUUEhBTElBMRQwEgYDVQQH
EwtEVUVTU0VMRE9SRjEiMCAGA1UEChDGC09GVFdBUkUgRU5HSU5FRVJJTkcgR01C
SDEUMBIGA1UECxMLREVWRUxPUE1FTlQxKDAmBgNVBAMTH0RCMiBTRUNVUkUgRElT
VFJJQlVUSU9OIFNFUlZJQ0UwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB
AQD70x0TZ5WsqsK6ZTy3b+Ry+xIcMTawO1+OeVG04dOPvrZEtVsvicS74vdllilB
I1OYncHNZ9/3E8RwxTv5qSxG4KW6PKsgd2Qpk7iBP4rMXKkrvp8rEp00OW0LgPur
4sCtQpEytfYps/AFhNwPoT1hK1hZkXjywILn7/sJ3t9zYCesDDUJlEJkywaO8U/V
vgLh0SsEq2aUlaxSYhyc4KAPsdencU0QuzSZhbwMyA+4i0eSK4fgOsGUmSoACVc4
Tg0qvFLF6iTcPEXW9XNJqlVGqg1RaWuNwKG00Z0lETZUbAVZsam4exiYnRUiT6J9
oyPfzQnB8+w59ir2Jx3p8wfbAgMBAAGjgbYwgbMwPwYJYIZIAYb4QgENBDIWMEdl
bmVyYXRlZCBieSB0aGUgU2VjdXJpdHkgU2VydmVyIGZvciB6L09TIChSQUNGKTAg
BgNVHREEGTAXgg9TMFcxLkRVUy5TRUcuREWHBMCoCWIwDgYDVR0PAQH/BAQDAgWg
MB0GA1UdDgQWBBQlyjuoy6SipU3H23fH7cpw+ALB0zAfBgNVHSMEGDAWgBT/MgiN
4im65Gpt4iPBBGhEz1XpXzAhffEdq2iG9w0BAQsFAAOCAQEAkDFU531SDp3lG1jH
IPdA6w9MeJx344sgd/K4LPzfIGuzmmuHZrAHCHZNaA64BBMogeGOV2zoxenwf07A
CIeTQpqE19TuNH2vyrulMd8p4c6VwUjto/N+GXobE3WmNt5nrdGLOIqrxutwmiMD
2HElOlIh7unsVqq24qfDczxHNVLapJlYy4gXiqC/UG8055GhjIwEaMvfEQ82GhcI
v1pekhL7hK0p8xGOAYQVBUM0MrpVBCSiFYdVs2hPaTA86QcyngT9CGNrXf2JeTgk
FIzH7h3nLdCRZd9KXQATQ5b24a9OXGzC6bKgiSD9unxWI8DYxBXOx3G3kufaXn2X
kOE/EQ==

-----END CERTIFICATE-----

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 55

Analyzing certificate issues

Base 64 encoded certificates can be decoded using OPENSSL:
Certificate: Data: Version: 3 (0x2) Serial Number: 4 (0x4) Signature Algorithm: sha256WithRSAEncryption
Issuer: C=DE, ST=NORTH RHINE WESTPHALIA, L=DUESSELDORF, O=SOFTWARE ENGINEERING GMBH, OU=DEVELOPMENT,
CN=SOFTWARE ENGINEERING ROOT CA Validity Not Before: Jan 15 23:00:00 2023 GMT Not After : Apr 1 22:59:59
2025 GMT Subject: C=DE, ST=NORTH RHINE WESTPHALIA, L=DUESSELDORF, O=SOFTWARE ENGINEERING GMBH,
OU=DEVELOPMENT, CN=DB2 SECURE DISTRIBUTION SERVICE Subject Public Key Info: Public Key Algorithm:
rsaEncryption Public-Key: (2048 bit) Modulus: 00:fb:d3:1d:13:67:95:ac:aa:c2:ba:65:3c:b7:6f:
e4:72:fb:12:1c:31:36:b0:3b:5f:8e:79:51:b4:e1: d3:8f:be:b6:44:b5:5b:2f:89:c4:bb:e2:f7:65:96:
29:41:23:53:98:9d:c1:cd:67:df:f7:13:c4:70:c5: 3b:f9:a9:2c:46:e0:a5:ba:3c:ab:20:77:64:29:93:
b8:81:3f:8a:cc:5c:a9:2b:be:9f:2b:12:9d:34:39: 6d:0b:80:fb:ab:e2:c0:ad:42:91:32:b5:f6:29:b3:
f0:05:84:dc:0f:a1:3d:61:2b:58:59:91:78:f2:c0: 82:e7:ef:fb:09:de:df:73:60:27:ac:0c:35:09:94:
42:64:cb:06:8e:f1:4f:d5:be:02:e1:d1:2b:04:ab: 66:94:95:ac:52:62:1c:9c:e0:a0:0f:b1:d7:a7:71:
4d:10:bb:34:99:85:bc:0c:c8:0f:b8:8b:47:92:2b: 87:e0:3a:c1:94:99:2a:00:09:57:38:4e:0d:2a:bc:
52:c5:ea:24:dc:3c:45:d6:f5:73:49:aa:55:46:aa: 0d:51:69:6b:8d:c0:a1:b4:d1:9d:25:11:36:54:6c:
05:59:b1:a9:b8:7b:18:98:9d:15:22:4f:a2:7d:a3: 23:df:cd:09:c1:f3:ec:39:f6:2a:f6:27:1d:e9:f3: 07:db
Exponent: 65537 (0x10001) X509v3 extensions: Netscape Comment: Generated by the Security Server for z/OS
(RACF) X509v3 Subject Alternative Name: DNS:S0W1.DUS.SEG.DE, IP Address:192.168.9.98 X509v3 Key Usage:
critical Digital Signature, Key Encipherment X509v3 Subject Key Identifier:
25:CA:3B:A8:CB:A4:A2:A5:4D:C7:DB:77:C7:ED:CA:70:F8:02:C1:D3 X509v3 Authority Key Identifier:
FF:32:08:8D:E2:29:BA:E4:6A:6D:E2:23:C1:04:68:44:CF:55:E9:5F Signature Algorithm: sha256WithRSAEncryption
Signature Value: 90:31:54:e7:7d:52:0e:9d:e5:1b:58:c7:20:f7:40:eb:0f:4c:
78:9c:77:e3:8b:20:77:f2:b8:2c:fc:df:20:6b:b3:9a:6b:87:
66:b0:07:08:76:4d:68:0e:b8:04:13:28:81:e1:8e:57:6c:e8:
c5:e9:f0:7f:4e:c0:08:87:93:42:9a:84:d7:d4:ee:34:7d:af:
ca:bb:a5:31:df:29:e1:ce:95:c1:48:ed:a3:f3:7e:19:7a:1b:
13:75:a6:36:de:67:ad:d1:8b:38:8a:ab:c6:eb:70:9a:23:03:
d8:71:25:3a:52:21:ee:e9:ec:56:aa:b6:e2:a7:c3:73:3c:47:
35:52:da:a4:99:58:cb:88:17:8a:a0:bf:50:6f:34:c3:b8:d0:
33:1c:04:68:cb:df:11:0f:36:1a:17:08:bf:5a:5e:92:12:fb:
84:ad:29:f3:11:8e:01:84:15:05:43:34:32:ba:55:04:24:a2:
15:87:55:b3:68:4f:69:30:3c:e9:07:32:9e:04:fd:08:63:6b:
5d:fd:89:79:38:24:14:8c:c7:ee:1d:e7:2d:d0:91:65:df:4a:
5d:00:13:43:96:f6:e1:af:4e:5c:6c:c2:e9:b2:a0:89:20:fd:
ba:7c:56:23:c0:d8:c4:15:ce:c7:71:b7:92:e7:da:5e:7d:97: 90:e1:3f:11

© 2024 SOFTWARE ENGINEERING GMBH and SEGUS Inc. 56

		2024-04-24T08:13:42+0200
	Software Engineering GmbH

