
Boston, MA

Esoteric functions in Db2
for z/OS

Roy Boxwell, Software Engineering GmbH

Session Code: E04

Date: July 11, 04:30pm

Agenda

• What does “esoteric functions” mean?

• FIT/FTB

• Spatial Indexes

• Regular Expressions

• Clone tables

• Scrollable Cursors

Agenda

• What does “esoteric functions” mean?

• FIT/FTB

• Spatial Indexes

• Regular Expressions

• Clone tables

• Scrollable Cursors

What does “esoteric functions” mean?

What I mean is to describe some, but not all, Db2 functions that are, in my humble opinion:

Odd

Strange

Not well understood

Not used

Downright weird

So, please join me on a voyage of discovery…

Agenda

• What does “esoteric functions” mean?

• FIT/FTB

• Spatial Indexes

• Regular Expressions

• Clone tables

• Scrollable Cursors

FIT/FTB

Is not this:

FIT/FTB

OK, I will be honest this is *not* a function, but it sure is badly understood and not just by
customers!

The idea behind Fast Index Traversal or Fast Traversal Block was to cache small, unique keyed
index data in memory so that the non-leaf pages must not be trawled through. The design was
tightly bundled to z hardware as the point of control was a 256 byte “line” of RAM in the L2
cache of the processor.

The use of these “lines” meant incredibly fast look up and usage as long as the data fits into
the storage line.

FIT/FTB

But why?

What was so wrong with the good old B-Tree index system?

FIT/FTB

But why?

What was so wrong with the good old B-Tree index system?

Too many reads!

Let’s have a quick look at a normal Db2 for z/OS b-tree index hierarchy and how it is
processed.

FIT/FTB

Root

77 142
Root level
also a non-leaf page

Level 3

23 77 80 142

10 23 24 77

10

+RID

23

+RID

24

+RID

77

+RID

…and...

Level 2

Level 1

Level 0

Non-leaf

Non-leaf

Leaf

…and...

Data Data Data Data

FIT/FTB

Root

77 142
Root level
also a non-leaf page

Level 3

23 77 80 142

10 23 24 77

10

+RID

23

+RID

24

+RID

77

+RID

…and...

Level 2

Level 1

Level 0

Non-leaf

Non-leaf

Leaf

…and...

Data Data Data Data

Read No. 1

FIT/FTB

Root

77 142
Root level
also a non-leaf page

Level 3

23 77 80 142

10 23 24 77

10

+RID

23

+RID

24

+RID

77

+RID

…and...

Level 2

Level 1

Level 0

Non-leaf

Non-leaf

Leaf

…and...

Data Data Data Data

Read No. 2

FIT/FTB

Root

77 142
Root level
also a non-leaf page

Level 3

23 77 80 142

10 23 24 77

10

+RID

23

+RID

24

+RID

77

+RID

…and...

Level 2

Level 1

Level 0

Non-leaf

Non-leaf

Leaf

…and...

Data Data Data Data

Read No. 3

FIT/FTB

Root

77 142
Root level
also a non-leaf page

Level 3

23 77 80 142

10 23 24 77

10

+RID

23

+RID

24

+RID

77

+RID

…and...

Level 2

Level 1

Level 0

Non-leaf

Non-leaf

Leaf

…and...

Data Data Data Data

Read No. 4

FIT/FTB

Root

77 142
Root level
also a non-leaf page

Level 3

23 77 80 142

10 23 24 77

10

+RID

23

+RID

24

+RID

77

+RID

…and...

Level 2

Level 1

Level 0

Non-leaf

Non-leaf

Leaf

…and...

Data Data Data DataRead No. 5

FIT/FTB

Root

77 142
Root level
also a non-leaf page

Level 3

23 77 80 142

10 23 24 77

10

+RID

23

+RID

24

+RID

77

+RID

…and...

Level 2

Level 1

Level 0

Non-leaf

Non-leaf

Leaf

…and...

Data Data Data Data

FTB

FIT/FTB

Root

77 142
Root level
also a non-leaf page

Level 3

23 77 80 142

10 23 24 77

10

+RID

23

+RID

24

+RID

77

+RID

…and...

Level 2

Level 1

Level 0

Non-leaf

Non-leaf

Leaf

…and...

Data Data Data Data

FTB

Read No. 1

FIT/FTB

Root

77 142
Root level
also a non-leaf page

Level 3

23 77 80 142

10 23 24 77

10

+RID

23

+RID

24

+RID

77

+RID

…and...

Level 2

Level 1

Level 0

Non-leaf

Non-leaf

Leaf

…and...

Data Data Data Data

FTB

Read No. 2

FIT/FTB

You can see that an FTB has *always* just two reads regardless of the depth of the
index – this is very good!

It requires just one mutex (which is actually just one assembler instruction
compare-and-set) and must *not* latch all of the intervening non-leaf pages – this
is very good!

So what’s wrong?

FIT/FTB

Well, they were pretty limited in availability:

Unique only, maximum length 64 Bytes

No versioning

No column with type TIMESTAMP with TIMEZONE

Not larger than 2,000,000 leaf pages

No more than 10,000 FTBs (One FTB per partition)

Anything else –> No FTB

Pretty restrictive huh?

FIT/FTB

If you got past the door and were at least a candidate for FTB, how and when did
you become one?

A new daemon is now running checking all the candidate indexes every two
minutes.

There is an internal counter and it is adjusted in various ways depending on what
has happened to the index since the last check…

FIT/FTB

Index usage:

Any random index traversal, index only or index plus data?

- Super! +

Used for lookaside?

- Not good! –

Used for sequential access?

- Not so good! –

Caused an index split?

- Very bad! (Halves the internal counter!) – –

Every two minutes the daemon compares these results with an internal threshold
and then the index is either FTB or not…

FIT/FTB

Set up and control:

The physical size of the FTBs is controlled by ZPARM:

INDEX_MEMORY_CONTROL

With valid values AUTO, DISABLE, or 10 – 200,000 MBs. Default is AUTO and then
the size is capped at 20% of all bufferpools or 10MB whichever is the highest.

-DISPLAY STATS(INDEXMEMORYUSAGE) or its baby sibling (IMU)

This shows you, in message DSNT783I, which indexes are being processed and how
much memory they are taking up.

FIT/FTB

Set up and control:

With APAR PH34859 (PTF UI75254 Closed 2021-05-05) a new command was added:

-DISPLAY STATS(INDEXTRAVERSECOUNT) or its baby sibling (ITC)

This shows you a list of traverse counts, in descending order, in message DSNT830I
all filterable on DBNAME, SPACENAM and PART.

FIT/FTB

Set up and control:

Two new IFCIDs were also created:

IFCID 389 is part of statistics trace class 8. It records all indexes that use fast
index traversal in the system.

IFCID 477 is part of performance trace class 4 and records the allocation
and deallocation activities of FTBs for fast index traversal.

FIT/FTB

Set up and control:

IFCID 2 (statistics record) got several new fields:

Current threshold for FTB creation.

Number of FTB candidates.

Total size allocated for all FTBs.

Number of FTBs currently allocated.

Number of objects that meet the criteria for FTB creation.

FIT/FTB

Set up and control:

For the fine control, what I call micro-management, there is a new catalog table
SYSIBM.SYSINDEXCONTROL where you can limit which index is available for FTB
and exactly when.

I would never recommend using this table, if at all possible, with the one exception
of excluding certain indexes, for whatever reason, from FTB processing completely.

FIT/FTB

Set up and control:

Remember from now on:

If you ALTER ADD a column to an index, you want to *check* beforehand if
you are going to put it over 64 bytes. It might well be being used as an FTB and
saving tons of CPU and I/O, and your ALTER will destroy this!

FIT/FTB

Changes in Db2 12 FL508:

Docu update:

„Columns in the INCLUDE list do not count toward the size limit“

This means that the INCLUDED columns are naturally *not* used for FTB.

FIT/FTB

Changes in Db2 12 FL508:

Docu update:

„Columns in the INCLUDE list do not count toward the size limit“

This means that the INCLUDED columns are naturally *not* used for FTB.

Duplicate index support!

FIT/FTB

Changes in Db2 12 FL508:

Docu update:

„Columns in the INCLUDE list do not count toward the size limit“

This means that the INCLUDED columns are naturally *not* used for FTB.

Duplicate index support!

Length limited to 56 bytes or less…

FIT/FTB

Changes in Db2 12 FL508:

New ZPARM:

FTB_NON_UNIQUE_INDEX

Controls whether or not to even consider duplicate indexes for FTB processing.
Default is NO.

FIT/FTB

Queries:

Here’s a couple of queries to review all candidate indexes you have and to see how
close to the limits for unique and non-unique you are getting!

FIT/FTB

WITH INPUT (NLEVELS, LENGTH, TABLE_NAME, INDEX_NAME) AS

(SELECT B.NLEVELS

, SUM(CASE D.COLTYPE

WHEN 'DECIMAL' THEN

SMALLINT(CEILING((D.LENGTH + 1) / 2))

WHEN 'GRAPHIC' THEN D.LENGTH * 2

WHEN 'VARG' THEN D.LENGTH * 2

WHEN 'LONGVARG' THEN D.LENGTH * 2

ELSE D.LENGTH

END)

+ SUM(CASE B.PADDED

WHEN 'Y' THEN 0

ELSE

CASE D.COLTYPE

WHEN 'VARG' THEN 2

WHEN 'LONGVARG' THEN 2

WHEN 'VARCHAR' THEN 2

WHEN 'LONGVAR' THEN 2

WHEN 'VARBIN' THEN 2

WHEN 'DECFLOAT' THEN 2

ELSE 0

END

END)

FIT/FTB

+ SUM(CASE D.NULLS

WHEN 'Y' THEN 1

ELSE 0

END) AS LENGTH

, STRIP(D.TBCREATOR) CONCAT '.' CONCAT STRIP(D.TBNAME)

, STRIP(B.CREATOR) CONCAT '.' CONCAT STRIP(B.NAME)

FROM SYSIBM.SYSINDEXES B

,SYSIBM.SYSKEYS C

,SYSIBM.SYSCOLUMNS D

WHERE B.UNIQUERULE NOT IN ('D','N') -- NOT DUPLICATE

AND D.COLTYPE <> 'TIMESTZ' -- NOT TIMEZONE

AND B.DBID > 6 -- NOT DIR/CAT

AND B.OLDEST_VERSION = B.CURRENT_VERSION -- NOT VERSIONED

AND C.ORDERING <> ' ' -- NO INCLUDE/IOE

AND B.TBNAME = D.TBNAME

AND B.TBCREATOR = D.TBCREATOR

AND B.NAME = C.IXNAME

AND B.CREATOR = C.IXCREATOR

AND C.COLNAME = D.NAME

GROUP BY D.TBCREATOR, D.TBNAME, B.CREATOR, B.NAME, B.NLEVELS)

SELECT NLEVELS, LENGTH , INDEX_NAME

FROM INPUT

WHERE LENGTH <= 64

FIT/FTB

-- ORDER BY NLEVELS DESC, LENGTH DESC -- IF STATISTICS ARE GOOD

ORDER BY LENGTH DESC, INDEX_NAME

FOR FETCH ONLY

WITH UR

;

The commented out ORDER BY makes sense if the statistics are all up to date. With
it the query shows you the “best” candidates first as the higher the number of
levels the better the savings when using FTBs.

FIT/FTB

WITH INPUT (NLEVELS, LENGTH, TABLE_NAME, INDEX_NAME) AS

(SELECT B.NLEVELS

, SUM(CASE D.COLTYPE

WHEN 'DECIMAL' THEN

SMALLINT(CEILING((D.LENGTH + 1) / 2))

WHEN 'GRAPHIC' THEN D.LENGTH * 2

WHEN 'VARG' THEN D.LENGTH * 2

WHEN 'LONGVARG' THEN D.LENGTH * 2

ELSE D.LENGTH

END)

+ SUM(CASE B.PADDED

WHEN 'Y' THEN 0

ELSE

CASE D.COLTYPE

WHEN 'VARG' THEN 2

WHEN 'LONGVARG' THEN 2

WHEN 'VARCHAR' THEN 2

WHEN 'LONGVAR' THEN 2

WHEN 'VARBIN' THEN 2

WHEN 'DECFLOAT' THEN 2

ELSE 0

END

END)

FIT/FTB

+ SUM(CASE D.NULLS

WHEN 'Y' THEN 1

ELSE 0

END) AS LENGTH

, STRIP(D.TBCREATOR) CONCAT '.' CONCAT STRIP(D.TBNAME)

, STRIP(B.CREATOR) CONCAT '.' CONCAT STRIP(B.NAME)

FROM SYSIBM.SYSINDEXES B

,SYSIBM.SYSKEYS C

,SYSIBM.SYSCOLUMNS D

WHERE B.UNIQUERULE IN ('D','N') -- DUPLICATE

AND D.COLTYPE <> 'TIMESTZ' -- NOT TIMEZONE

AND B.DBID > 6 -- NOT DIR/CAT

AND B.OLDEST_VERSION = B.CURRENT_VERSION -- NOT VERSIONED

AND C.ORDERING <> ' ' -- NO INCLUDE/IOE

AND B.TBNAME = D.TBNAME

AND B.TBCREATOR = D.TBCREATOR

AND B.NAME = C.IXNAME

AND B.CREATOR = C.IXCREATOR

AND C.COLNAME = D.NAME

GROUP BY D.TBCREATOR, D.TBNAME, B.CREATOR, B.NAME, B.NLEVELS)

SELECT NLEVELS, LENGTH, INDEX_NAME

FROM INPUT

WHERE LENGTH <= 56

FIT/FTB

-- ORDER BY NLEVELS DESC, NLENGTH DESC -- IF STATISTICS ARE GOOD

ORDER BY LENGTH DESC, INDEX_NAME

FOR FETCH ONLY

WITH UR

;

The commented out ORDER BY makes sense if the statistics are all up to date. With
it, the query shows you the “best” candidates first as the higher the number of
levels the better the savings when using FTBs.

FIT/FTB

APAR list as of 2022-07-08:
APAR Closed PTF Description

PH28182 2020-09-25 UI71784 INDEX LOOK ASIDE SUPPORT WHEN INDEX FAST TRAVERSE BLOCK(FTB) IS IN USE

PH29102 2020-10-27 UI72276 ABEND04E DSNKTRAV ERQUAL505B RC00C90101 FTB TRAVERSAL

PH29336 2020-09-22 UI71351 IRLM CORRECT RESULTANT HELD STATE FOR FTB PLOCKS WHEN PLOCK EXIT WOULD

HAVE EXITTED WITH ERROR.

PH29676 2020-10-16 UI72118 ABEND04E RC00C90101 AT DSNKTRAV 5058 DURING INSERT VIA FTB

PH30978 2021-06-01 UI75643 SUBSYSTEM PARAMETER TO ENABLE INDEX IN-MEMORY OPTIMIZATION (FTB) FOR

NON-UNIQUE INDEXES

PH34468 2021-04-20 UI75007 ABEND04E RC00C90101 AT DSNKTRAV ERQUAL5021 VIA FTB TRAVERSAL

PH34859 2021-05-05 UI75254 DB2 12 FOR Z/OS NEW FUNCTION FOR FTB (FAST TRAVERSE BLOCKS)

PH35596 2021-04-07 UI74814 INSERT SPLITTING PAGE INTO FTB LEAF NODE GOT DSNKFTIN:5002 ABEND

BECAUSE OLD PAGE THAT CAUSE THE PAGE SPLIT WAT MISSING IN FTB.

PH36406 2021-05-07 UI75288 INSERT KEY INTO FTB PROCESS DETECTING INCONSISTENT STRUCTURE

MODIFICATION NUMBER THEN GOT DSNKFTIN:5043 ABEND

FIT/FTB

APAR list as of 2022-07-08:
APAR Closed PTF Description

PH36434 2021-05-13 UI75392 DB2 12 FOR Z/OS INTERNAL SERVICEABILITY UPDATE (Improve Create / Free

FTB log recs)

PH36531 2021-05-13 UI75391 ABEND04E RC00C90101 AT DSNKINSN ERQUAL5009 AND DSNKFTIN ERQUAL5066 FOR

FTB INSERT PLOCK FAILURE

PH36978 2021-06-18 UI75978 FTB MESSAGE MSGDSNT351I ISSUED INCORRECTLY

PH38212 2021-07-07 UI76239 ABEND04E RC00C90101 AT DSNKFTBU ERQUAL5061 AND DSNK1CNE ERQUAL5006

DURING FTB CREATION

PH39105 2021-10-18 UI77687 DB2 12 FTB INDEXTRAVERSECOUNT = 4294967295 FOR OBJECTS NOT ENABLED FOR

FTB

PH40269 2021-09-16 UI77189 ABEND04E RC00E72068 AT DSNXSRME OFFSET01024 DUE TO A TIMING WINDOW

WHEN USING INDEX FAST TRAVERSE BLOCK (FTB)

FIT/FTB

APAR list as of 2022-07-08:
APAR Closed PTF Description

PH40273 2021-11-09 UI78000 IMPROVE PERFORMANCE OF FTB STORAGE POOL ADMF INDEX MANAGER CL20

PH40539 2021-10-07 UI77500 FTB DEADLOCK OCCURS WITH SYSTEM ITASK – CORRID=014.IFTOMK01

PH41751 2021-12-01 UI78344 DB2 12 FOR Z/OS NEW FUNCTION (Actually remove DSN070I message!)

PH42975 2022-01-27 UI79112 SMF FIELD QISTFTBSIZE EXCEEDS ZPARM INDEX_MEMORY_CONTROL

PH43565 2022-02-14 UI79317 INCORROUT WITH FTB AND NON-UNIQUE INDEXES WITH GREATER THAN PREDICATE

PH43735 2022-03-10 UI79674 AFTER ISSUING A DISPLAY STATISTICS COMMAND DISPLAY STATS(ITC) LIMIT(*),

DB2 INVALIDLY ISSUES AN ABEND04E 00F9000C

PH44181 2022-04-01 UI79984 ABEND04E RC00C90101 IN DSNICUBC ERQUAL5004 (Actually caused by look up

to SYSINDEXES from SYSINDEXCONTROL!)

PH47795 OPEN ABEND04E 00C90101 AT DSNK1CNE ERQUAL 5005 DURING NORMAL DB2 PROCESSING

PH40273 introduces a new 20 minute cycle when Db2 contracts the ADMF INDEX
MANAGER CL20 (Hiperspace) storage pool due to serious fragmentation issues.

Agenda

• What does “esoteric functions” mean?

• FIT/FTB

• Spatial Indexes

• Regular Expressions

• Clone tables

• Scrollable Cursors

Spatial Indexes

Spatial Indexes

These are very interesting beasts and are really great if you wish to work with
areas of data or locations.

You cannot simply create a “Spatial Index,” you must call a stored procedure to do
it for you.

It might sound obvious but you need spatial data before you can create a spatial
index!

Spatial Indexes

To get spatial data you can use one of the many DB2GSE stored procs like this:

INSERT INTO USA.ZIPCODES

SELECT DB2GSE.ST_POINT('POINT (LONGITUDE LATITUDE)' , 1003)

,LONGITUDE

.

.

It uses as input the POINT of the co-ordinates, in this case Longitude and Latitude
and the all important SRS_ID (Spatial Reference System), in my case 1003 as it was
based on an old file containing ZIPCODEs using the WGS84 system.

Spatial Indexes

You should have a list of SRS’s like this:

SELECT * FROM DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS;

---------+---------+---------+-------------+-

SRS_NAME SRS_ID

---------+---------+---------+-------------+-

DEFAULT_SRS 0

NAD83_SRS_1 1

NAD27_SRS_1002 1002

WGS84_SRS_1003 1003

DE_HDN_SRS_1004 1004

Spatial Indexes

You should have a list of Units of Measure starting like this:
SELECT UNIT_NAME FROM DB2GSE.ST_UNITS_OF_MEASURE ;

---------+---------+---------

UNIT_NAME

---------+---------+---------

METRE

FOOT

US SURVEY FOOT

CLARKE'S FOOT

FATHOM

NAUTICAL MILE

GERMAN LEGAL METRE

US SURVEY CHAIN

US SURVEY LINK

US SURVEY MILE

KILOMETRE

CLARKE'S YARD

CLARKE'S CHAIN

CLARKE'S LINK

BRITISH YARD (SEARS 1922)

Spatial Indexes

An insert using the POINT spatial proc looks like:

INSERT INTO USA.ZIPCODES

VALUES (DB2GSE.ST_POINT('POINT (-71,013202

43,005895)' , 1003)

, -71,013202 , 43,005895 ,'NH', -5 , 1 ,

210 ,'Portsmouth’)

;

These inserts are pretty expensive in cpu, by the way!

Spatial Indexes

How to select spatial data using the ST_WITHIN and ST_BUFFER spatial procs:

SELECT A.CITY, COUNT(*)

FROM USA.ZIPCODES A

WHERE DB2GSE.ST_WITHIN(A.LOCATION,DB2GSE.ST_BUFFER (

(SELECT B.LOCATION

FROM USA.ZIPCODES B

WHERE B.ZIP = 85009) -- Phoenix

, 15 , 'STATUTE MILE')) = 1

GROUP BY A.CITY

;

This returns all cities, with how many zipcodes, within 15 statute miles of Phoenix.

Spatial Indexes

There are about 70 different spatial functions by the way.

In this SQL I just used two:

- ST_BUFFER has three parameters. The first is a “geometry” or LOCATION type field,
then a distance, and finally the units. What it does is create a geometric space that
is centered on the input geometry and is then the number of units around it (A
radius in this case as we have a point as the input geometry). Thus, we have a
“space” of 15 statute miles in radius centered on Phoenix AZ (Well, actually on the
location of zip code 85009 but that is near enough for me!)

- ST_WITHIN has two parameters which are both “geometries” and if one is within the
other it returns a 1 else a 0 thus enabling the simple SQL I wrote.

Spatial Indexes

Ok, we now have Spatial data but of course it runs *very* slowly, so now we, finally,
get around to creating a Spatial Index!

In order to create a SPATIAL INDEX you must use a stored procedure with a bunch of
parameters:

sysproc.ST_create_index (table_schema/NULL, table_name ,
column_name , index_schema/NULL, index_name ,
other_index_options/NULL, grid_size1 , grid_size2 , grid_size3 ,
msg_code , msg_text)

Spatial Indexes

Grid sizes

Spatial Indexes

Spatial indexes generate a spatial grid index using the minimum bounding rectangle
(MBR) of a geometry.

A spatial grid index divides a region into logical square grids with a fixed size that you
specify when you create the index. The spatial index is constructed on a spatial
column by making one or more entries for the intersections of each geometry's MBR
with the grid cells. An index entry consists of the grid cell identifier, the geometry
MBR, and the internal identifier of the row that contains the geometry.

You can define up to three spatial index levels (grid levels). Using several grid levels is
beneficial because it allows you to optimize the index for different sizes of spatial
data.

Spatial Indexes

In the command are the interesting “grid_size” columns. This is one area where you
can really tweak performance.

The number of grid levels, maximum three, this should be the best fit to the different
sizes of grids that will be contained within the data. If all your cells are the same size
use one, if all different three!

Per grid you then define the cell size - this is very important as it determines the
granularity of the resulting grid. The best value is the lowest number that suits your
map grid “finest fit”. The larger the value the smaller the index.

Spatial Indexes

If all three levels are used and the index intersection is bigger than the third then the
index fails over into a system-defined overflow index.

This overflow index should be avoided for maximum performance.

For example, if multiple grid levels exist, the indexing algorithm attempts to use the lowest grid
level possible to provide the finest resolution for the indexed data. When a geometry intersects
more than four grid cells at a given level, it is promoted to the next higher level (provided that
there is another level). Therefore, a spatial index that has the three grid levels of 10.0, 100.0, and
1000.0 will first intersect each geometry with the level 10.0 grid. If a geometry intersects with
more than four grid cells of size 10.0, it is promoted and intersected with the level 100.0 grid. If
more than four intersections result at the 100.0 level, the geometry is promoted to the 1000.0
level. If more than 10 intersections result at the 1000.0 level, the geometry is indexed in the
overflow level.

Spatial Indexes

sysproc.ST_create_index (table_schema/NULL, table_name ,
column_name , index_schema/NULL, index_name ,
other_index_options/NULL, grid_size1 , grid_size2 , grid_size3 ,
msg_code , msg_text)

Setting the grid_size2 to a non-zero value gives you a two-level grid and then setting
the grid_size3 to a non-zero value gives you a three-level grid.

Spatial Indexes

Using the command processor DSN5SCLP the syntax looks like:

DSN5SCLP /create_idx ZA00QA1A +

-tableschema USA -tablename ZIPCODES -columnname LOCATION +

-indexschema USA -indexname LOC_IX +

-otherIdxOpts "FREEPAGE 0" +

-gridSize1 1.0 -gridSize2 2.0 -gridSize3 3.0

When it executes it just tells you this:

********************************* TOP OF DATA *****

GSE0000I The operation was completed successfully.

******************************** BOTTOM OF DATA ***

Spatial Indexes

When do Spatial indexes get used by the optimizer?

Only when the SQL contains one of the functions in the following list and the value on
the right hand side of the predicate is 1 can an index be used:

ST_Contains

ST_Crosses

ST_Distance (Predicate must be less than the left hand side)

EnvelopesIntersect

ST_Equals

ST_Intersects

ST_Overlaps

ST_Touches

ST_Within

Spatial Indexes

Problems?

Number one is <still> no LOAD is allowed…

Number two is no SHRLEVEL CHANGE on REBUILD INDEX

Spatial Indexes

Benefits?

Lots! Here’s the benchmark data of 100 runs of the Phoenix SQL earlier:

Without Spatial Index With Spatial Index

Elapsed CPU Elapsed CPU

202 seconds 186 seconds 25 seconds 23 seconds

So they sure have their uses!

Agenda

• What does “esoteric functions” mean?

• FIT/FTB

• Spatial Indexes

• Regular Expressions

• Clone tables

• Scrollable Cursors

Regular expressions

Regular expressions

Yes!

They are available, and not just on computers you can lift!

Now it is ugly, very ugly, in fact it is the ugliest thing I have ever seen and I am not a very
toxic person normally…

Let us begin with a blog entry for LUW:

Well… on the “boxes you can lift” they have had regex for a long time, all built into the
Db2 Engine. Fred Sobotka’s article “Advanced Pattern Matching with Regular
Expressions in DB2 11.1 for LUW” in the IDUG Blog shows lots of really cool ways of
using REGEXP_LIKE and its brethren and is well worth a read.

Regular expressions

Here is a regex that lists out all tables that start with between two and five characters ranging
from B to Z and then ends with just two numerics:
SELECT NAME, creator from SYSIBM.SYSTABLES

WHERE

XMLEXISTS('$newXDoc[fn:matches(., "^[B-Z]{2,5}[0-9]{2}$")]' PASSING

XMLQUERY('<doc>{$xmltbname}</doc>' PASSING NAME as "xmltbname")

as "newXDoc")

order by 1

fetch first 10 rows only

;

---------+---------+---------+---------+---------+---------+---------

NAME

---------+---------+---------+---------+---------+---------+---------

CERNT01

CERNT02

CERNT04

It will not win a beauty contest any day soon but, hey, it works!

Regular expressions

Ok, to understand what on earth that SQL does I will now strip it down into its component
parts:

SELECT NAME, creator from SYSIBM.SYSTABLES

WHERE

XMLEXISTS('$newXDoc[fn:matches(., "^[B-Z]{2,5}[0-9]{2}$")]' PASSING

XMLQUERY('<doc>{$xmltbname}</doc>' PASSING NAME as "xmltbname")

as "newXDoc")

order by 1

fetch first 10 rows only

;

A normal “select” statement right down to the WHERE

Regular expressions

Ok, to understand what on earth that SQL does I will now strip it down into its component
parts:

SELECT NAME, creator from SYSIBM.SYSTABLES

WHERE

XMLEXISTS('$newXDoc[fn:matches(., "^[B-Z]{2,5}[0-9]{2}$")]' PASSING

XMLQUERY('<doc>{$xmltbname}</doc>' PASSING NAME as "xmltbname")

as "newXDoc")

order by 1

fetch first 10 rows only

;

This part is where the magic is actually happening and must be viewed as being two
separate statements!

Regular expressions

Ok, to understand what on earth that SQL does I will now strip it down into its component
parts:

SELECT NAME, creator from SYSIBM.SYSTABLES

WHERE

XMLEXISTS('$newXDoc[fn:matches(., "^[B-Z]{2,5}[0-9]{2}$")]' PASSING

XMLQUERY('<doc>{$xmltbname}</doc>' PASSING NAME as "xmltbname")

as "newXDoc")

order by 1

fetch first 10 rows only

;

The inner part “translates” the column NAME into an XML construct called xmltbname
ready for the outer part that does the regex.

Regular expressions

Ok, to understand what on earth that SQL does I will now strip it down into its component
parts:

SELECT NAME, creator from SYSIBM.SYSTABLES

WHERE

XMLEXISTS('$newXDoc[fn:matches(., "^[B-Z]{2,5}[0-9]{2}$")]' PASSING

XMLQUERY('<doc>{$xmltbname}</doc>' PASSING NAME as "xmltbname")

as "newXDoc")

order by 1

fetch first 10 rows only

;

The outer part uses the fn:matches function which does the regex using the PASSING
XMLQUERY output xmltbname “cast” as newXDoc as input. Because fn:matches is a
Boolean predicate there is no need for any other predicate as it returns TRUE – row is good
or FALSE – row is bad.

Regular expressions

It is a bit weird and I can recommend some more reading, firstly the excellent Rex Egg regex
site where you can learn all about the joys and dangers of these beasts:

http://www.rexegg.com/

And the IBM XQuery docu that describes how the fn:matches works in detail:

https://www.ibm.com/docs/en/db2-for-zos/12?topic=expressions-regular

Both are worth a read - be especially careful about “explosive quantifiers”!

Regular expressions rules (1|5)

Regular expressions rules (2|5)

backslash (\) Begins a character class escape. A character class escape indicates that the
metacharacter that follows is to be used as a character, instead of a
metacharacter.

period (.) Matches any single character except a newline character (\n).

carat (^) If the carat character appears outside of a character class, the characters that
follow the carat match the start of the input string or, for multi-line input
strings, the start of a line. An input string is considered to be a multi-line input
string if the function that uses the input string includes the m flag. If the carat
character appears as the first character within a character class, the carat acts
as a not-sign. A match occurs if none of the characters in the character group
appear in the string that is being compared to the regular expression.

dollar sign ($) Matches the end of the input string or, for multi-line input strings, the end of a
line. An input string is considered to be a multi-line input string if the function
that uses the input string includes the m flag.

Regular expressions rules (3|5)

question mark Matches the preceding character or character group in the regular
(?) expression zero or one time.

asterisk (*) Matches the preceding character or character group in the regular expression
zero or more times.

plus sign (+) Matches the preceding character or character group in the regular expression
one or more times.

pipe (|) Logical “or” from character or character group in the regular expression.

{n} Matches the preceding character or character group in the regular
expression exactly n times.

{n,m} Matches the preceding character or character group in the regular
expression at least n times, but not more than m times.

Regular expressions rules (4|5)

{n,} Matches the preceding character or character group in the regular
expression at least n times.

opening bracket ([) and closing bracket (])

The opening and closing brackets and the enclosed character group define
a character class. For example, the character class [aeiou] matches any
single vowel. Character classes also support character ranges. For example:

[a-z] means any lowercase letter.

[a-p] means any lowercase letter from a through p.

[0-9] means any single digit.

opening parenthesis (() and closing parenthesis ())
An opening and closing parenthesis denote a grouping of some characters
within a regular expression.

Regular expressions rules (5|5)

character-class-escape
A character class escape specifies that you want certain special characters
to be treated as characters, instead of performing some function. A
character class escape consists of a backslash (\), followed by a single
metacharacter, newline character, return character, or tab character.

Examples of Regex:

• "(ca)|(bd)" matches "arcade" or "abdicate".

• "^((ca)|(bd))" does not match "arcade" or "abdicate". → But "cade" or "bdicate“

Note that ^ in this case is the starting point not “not”!

• "w?s" matches "ws" or "s".

• "w.*s" matches "was" or "waters".

• "be+t" matches "beet" or "bet".

• "be{1,3}t" matches "bet", "beet", or "beeet" but not "beeeet".

• "not$" matches "not", "or not" but not "not only”.

Regular expressions

CPU?

Yep, you guessed it. There is no such thing as a free lunch! The use of this method is *not*
CPU-light. It should only ever be used if normal LIKE, REPLACE or TRANSLATE cannot easily
get the job done and if you end up coding a regex like:

^(?=(?!(.)\1)([^\DO:105-93+30])(?-1)(?<!\d(?<=(?![5-90-3])\d))).[^\WHY?]$

Then do not be surprised if your colleagues all start to hate you!

Regular expressions

XML function fun!

• fn:abs

• fn:adjust-date-to-timezone

• fn:adjust-dateTime-to-timezone

• fn:adjust-time-to-timezone

• fn:avg

• fn:boolean

• fn:compare

• fn:concat

• fn:contains

• fn:count

• fn:current-date

• fn:current-dateTime

• fn:current-time

• fn:data

• fn:dateTime

• fn:day-from-date

• fn:day-from-dateTime

• fn:days-from-duration

• fn:distinct-values

• fn:hours-from-dateTime

XML function fun!

• fn:hours-from-duration

• fn:hours-from-time

• fn:implicit-timezone

• fn:minutes-from-dateTime

• fn:minutes-from-duration

• fn:minutes-from-time

• fn:month-from-date

• fn:month-from-dateTime

• fn:months-from-duration

• fn:normalize-space

• fn:last

• fn:local-name

• fn:lower-case

• fn:matches

• fn:max

• fn:min

• fn:name

• fn:not

• fn:position

• fn:replace

XML function fun!

• fn:round

• fn:seconds-from-datetime

• fn:seconds-from-duration

• fn:seconds-from-time

• fn:starts-with

• fn:string

• fn:string-length

• fn:substring

• fn:sum

• fn:timezone-from-date

• fn:timezone-from-dateTime

• fn:timezone-from-time

• fn:tokenize

• fn:translate

• fn:upper-case

• fn:year-from-date

• fn:year-from-datetime

• fn:years-from-duration

XML function fun!

• fn:round

• fn:seconds-from-datetime

• fn:seconds-from-duration

• fn:seconds-from-time

• fn:starts-with

• fn:string

• fn:string-length

• fn:substring

• fn:sum

• fn:timezone-from-date

• fn:timezone-from-dateTime

• fn:timezone-from-time

• fn:tokenize

• fn:translate

• fn:upper-case

• fn:year-from-date

• fn:year-from-datetime

• fn:years-from-duration

That’s a *lot* of functions!

XML function fun!

How many of those do you even need in XML when we have a lot of
them as Built-in Functions within SQL?

XML function fun!

How many of those do you even need in XML when we have a lot of
them as Built-in Functions within SQL?

Three…

XML function fun!

How many of those do you even need in XML when we have a lot of
them as Built-in Functions within SQL?

Three…

fn:normalize-space

fn:matches

fn:replace function

That‘s all you need – We already saw fn:matches as regex

XML function fun!

fn:normalize-space
SELECT C1 AS "Original Column"

,LENGTH(C1) AS "Old Length"

,LENGTH(XMLCAST(XMLQUERY('fn:normalize-space($HOST_COLUMN)' PASSING C1

AS HOST_COLUMN) AS VARCHAR(100))) AS "New Length"

, XMLCAST(XMLQUERY('fn:normalize-space($HOST_COLUMN)' PASSING C1

AS HOST_COLUMN) AS VARCHAR(100)) AS "Reformatted Column"

FROM (

SELECT C1

FROM (

SELECT ' a12 fredd34' AS C1 FROM SYSIBM.SYSDUMMY1

UNION ALL

SELECT '23 h ap e1 ' AS C1 FROM SYSIBM.SYSDUMMY1

UNION ALL

SELECT 'rb' AS C1 FROM SYSIBM.SYSDUMMY1

UNION ALL

SELECT '01w23hat' AS C1 FROM SYSIBM.SYSDUMMY1

) DUMMY

)

;

XML function fun!

fn:normalize-space

---------+---------+---------+---------+---------+---------+---

Original Column Old Length New Length Reformatted Column

---------+---------+---------+---------+---------+---------+---

a12 fredd34 15 11 a12 fredd34

23 h ap e1 17 10 23 h ap e1

rb 2 2 rb

01w23hat 8 8 01w23hat

DSNE610I NUMBER OF ROWS DISPLAYED IS 4

DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

Pretty neat! Try that in SQL!

XML function fun!

fn:replace function
SELECT C1 AS "Original Column"

,XMLQUERY('fn:replace($HOST_COLUMN , "[^0-9]" , "0")' PASSING C1

AS HOST_COLUMN) AS "Raw Data"

FROM (

SELECT C1

FROM (

SELECT '12a34' AS C1 FROM SYSIBM.SYSDUMMY1

) DUMMY_VALUES

) DUMMY

;

---------+---------+---------+---------+---------+---------+---

Original Column Raw Data

---------+---------+---------+---------+---------+---------+---

12a34 <?xml version="1.0" encoding="IBM01141"?>12034

DSNE610I NUMBER OF ROWS DISPLAYED IS 1

Hmmm… seems to be an XML Document and not a real column!

XML function fun!

fn:replace function
SELECT C1 AS "Original Column“

,XMLCAST(

XMLQUERY('fn:replace($HOST_COLUMN , "[^0-9]" , "0")' PASSING C1

AS HOST_COLUMN)

AS DECIMAL(5 , 0))

AS "Raw Data"

FROM (

SELECT C1

FROM (

SELECT '12a34' AS C1 FROM SYSIBM.SYSDUMMY1

) DUMMY_VALUES

) DUMMY

;

---------+---------+---------+---------

Original Column Raw Data

---------+---------+---------+---------

12a34 12034.

DSNE610I NUMBER OF ROWS DISPLAYED IS 1

Much better!

Agenda

• What does “esoteric functions” mean?

• FIT/FTB

• Spatial Indexes

• Regular Expressions

• Clone tables

• Scrollable Cursors

Clone tables

Clone tables

CLONE tables arrived in DB2 9 and have not really been well used.

The idea behind them was pretty good:

Load/Insert data over days/weeks into a table while the primary table is “in use”

At some point in time decide to “swap” the data around really quickly

Users now use the “new” data without realizing *any* change!

Sounds great doesn’t it?

Clone tables

Problems started appearing right from the get go…

• The EXCHANGE of the data is really fast *but* it requires a DBD x-lock – Ouch!

• The RTS data is separate and accurate but the Catalog Statistics are *not* - Pow!

• Doing any DDL Change to the Table required a *drop* of the CLONE – Kapow!

• Finally, ONLINE LOAD (SHRLEVEL CHANGE aka Mass INSERT) basically killed off the
requirement for CLONES completely – flat line tone…

There is still a niche requirement out there and they have *not* yet been deprecated so
lets dive on down into all the juicy details!

Clone tables

So what is a CLONE Table?

It is basically a duplicate table that lives in the „same“ tablespace but with a different
INSTANCE.

This is the first place where people make mistakes. You read a lot about renaming the
VSAM LDS.

That *never* happens with CLONEs. The „trick“ that IBM uses is the INSTANCE column in
the SYSTABLESPACE (hence the x-lock I just mentioned).

Clone tables

Now to create a CLONE you do not use CREATE of course…

Clone tables

Now to create a CLONE you do not use CREATE of course…

Naturally, you use ALTER:

ALTER TABLE BOXWELL.TEST_BASE

ADD CLONE RINGO.AARDVARK

;

This creates a whole new set of VSAM LDS’s all with an INSTANCE value of “2” near the end
of the VSAM DSN.

Clone tables

In ISPF 3.4 you would see this:

DB2DC1.DSNDBD.TESTDB.TESTRBAS.I0001.A001

DB2DC1.DSNDBD.TESTDB.TESTRBAS.I0002.A001

DB2DC1.DSNDBD.TESTDB.TESTTS.I0001.A001

DB2DC1.DSNDBD.TESTDB.TESTTS.I0002.A001

DB2DC1.DSNDBD.TESTDB.TEST1BZC.I0001.A001

DB2DC1.DSNDBD.TESTDB.TEST1BZC.I0002.A001

In SYSTABLESPACE you would see INSTANCE = 1 and column CLONE = Y telling you that this
tablespace is in a clone relationship.

In the RTS you get two rows also using INSTANCE = 1 and 2.

Clone tables

Doing the swap is not another ALTER:

EXCHANGE DATA BETWEEN TABLE BOXWELL.TEST_BASE

AND RINGO.AARDVARK

;

At this point, the DBD gets locked so the SYSTABLESPACE can be changed from INSTANCE
value 1 to 2 and you are done!

All SQL continues to work as before but are now “seeing” the data from the “other” table.
For long running background refreshes of static cross-reference system of records – Super!

Clone tables

For dynamic tables, it is a disaster as the EXCHANGE has *no* idea of any updates “in
flight” or “in commit” etc.

There is no log-apply phase to back-out any changes.

This was a major problem of course!

Clone tables

Utilities are severely limited on CLONEs, you can only run MODIFY RECOVERY, COPY, REORG
(without inline statistics!) and QUIESCE.

Why?

Because there is only one set of catalog statistics for them. A RUNSTATS would destroy all
of the data for *both* objects and the current object access paths might all go south;
further, you absolutely *must* add the keyword CLONE to the utility control cards. You
cannot rely on LISTDEF to do this for you and this is documented:

This utility processes clone data only if the CLONE keyword is specified. The use of CLONED
YES on the LISTDEF statement is not sufficient.

Clone tables

Because RUNSTATS are not allowed on the CLONE, but you would probably need a
RUNSTATS, you must remember to schedule a RUNSTATS as soon as possible after the
exchange of data has been done.

To get rid of a CLONE, naturally DROP is not used, just another ALTER:

ALTER TABLE BOXWELL.TEST_BASE

DROP CLONE

;

Finally, all commands got a CLONE keyword:

-START DATABASE(xxx) SPACENAM(yyy) CLONE

Agenda

• What does “esoteric functions” mean?

• FIT/FTB

• Spatial Indexes

• Regular Expressions

• Clone tables

• Scrollable Cursors

Scrollable Cursors

Scrollable Cursors

Quite a few people do not like these as some of them cause large amounts of CPU and I/O
for materialization reasons that might/should not actually be done, but on the other hand
they are great for certain processes.

As always, YMMV and the cheque is in the post…

Scrollable Cursors

Cursor definition 101:

This might not look that interesting but look how the docu reads if you start going down
the road of SCROLL…

Scrollable Cursors

Cursor definition 101:

ASENSITIVE

Specifies that the cursor should be as sensitive as possible. This is the default.

A cursor that defined as ASENSITIVE will be either insensitive or sensitive dynamic; it
will not be sensitive static.

The sensitivity of a cursor is a factor in the choice of access path. Explicitly specify the
sensitivity level that you need, instead of specifying ASENSITIVE (or leaving it to be
simply the default!)

Scrollable Cursors

Cursor definition 101:

INSENSITIVE

Specifies that the cursor does not have sensitivity to inserts, updates, or deletes that
are made to the rows underlying the result table. As a result, the size of the result
table, the order of the rows, and the values for each row do not change after the
cursor is opened. In addition, the cursor is read-only.

SENSITIVE

Specifies that the cursor has sensitivity to changes that are made to the database after
the result table is materialized. The cursor is always sensitive to updates and deletes
that are made using the cursor (that is, positioned updates and deletes using the same
cursor). When the current value of a row no longer satisfies the select-statement or
statement-name, that row is no longer visible through the cursor. When a row of the
result table is deleted from the underlying base table, the row is no longer visible
through the cursor.

Scrollable Cursors

Cursor definition 101:

SENSITIVE DYNAMIC

Specifies that the result table of the cursor is dynamic, meaning that the size of the
result table might change after the cursor is opened as rows are inserted into or
deleted from the underlying table, and the order of the rows might change. Rows that
are inserted, deleted, or updated by statements that are executed by the same
application process as the cursor are visible to the cursor immediately. Rows that are
inserted, deleted, or updated by statements that are executed by other application
processes are visible only after the statements are committed. If a column for an
ORDER BY clause is updated via a cursor or any means outside the process, the next
FETCH statement behaves as if the updated row was deleted and re-inserted into the
result table at its correct location. At the time of a positioned update, the cursor is
positioned before the next row of the original location and there is no current row,
making the row appear to have moved.

Scrollable Cursors

Cursor definition 101:

SENSITIVE STATIC
Specifies that the size of the result table and the order of the rows do not
change after the cursor is opened. Rows inserted into the underlying table are
not added to the result table regardless of how the rows are inserted. Rows in
the result table do not move if columns in the ORDER BY clause are updated in
rows that have already been materialized. Positioned updates and deletes are
allowed if the result table is updatable. The SELECT statement of a cursor that is
defined as SENSITIVE STATIC cannot contain an SQL data change statement.
A STATIC cursor has visibility to changes made by this cursor using positioned
updates or deletes. Committed changes made outside this cursor are visible
with the SENSITIVE option of the FETCH statement. A FETCH SENSITIVE can
result in a hole in the result table (that is, a difference between the result table
and its underlying base table). This leads to SQLWARNING +222 by FETCH.

Scrollable Cursors

That’s a *lot* of text…So here are some Rules of Thumb (1|3):

• Declare scrollable cursors as SENSITIVE only if you need to see the latest
data.

• If you do not need to see updates that are made by other cursors or
application processes, using a cursor that you declare as
INSENSITIVE requires less processing by DB2.

• If you need to see only some of the latest updates, and you do not need
to see the results of insert operations, declare scrollable cursors as
SENSITIVE STATIC.

Scrollable Cursors

That’s a *lot* of text…So here are some Rules of Thumb (2|3):

• If you need to see all of the latest updates and inserts, declare
scrollable cursors as SENSITIVE DYNAMIC.

• To ensure maximum concurrency when you use a scrollable cursor for
positioned update and delete operations, specify ISOLATION(CS) and
CURRENTDATA(NO) when you bind packages that contain updatable
scrollable cursors.

Scrollable Cursors

That’s a *lot* of text…So here are some Rules of Thumb(3|3):

In a work file database, create 32Kb table spaces that are large enough for processing your
scrollable cursors. Db2 uses declared temporary tables for processing the following types
of scrollable cursors:

• SENSITIVE STATIC SCROLL

• INSENSITIVE SCROLL

• ASENSITIVE SCROLL, if the cursor sensitivity is INSENSITIVE. (A cursor that meets the
criteria for a read-only cursor has an effective sensitivity of INSENSITIVE)

Scrollable Cursors

Cursor definition 101:

DECLARE sensitivity FETCH INSENSITIVE FETCH SENSITIVE

INSENSITIVE

No changes to the underlying table are

visible in the result table. Positioned UPDATE

and DELETE statements using the cursor are

not allowed.

Not valid.

SENSITIVE STATIC

Only positioned updates and deletes that are

made by the cursor are visible in the result

table.

All updates and deletes are visible in the

result table. Inserts made by other processes

are not visible in the result table.

SENSITIVE DYNAMIC Not valid.

All committed changes are visible in the

result table, including updates, deletes,

inserts, and changes in the order of the rows.

Scrollable Cursors

Cursor definition 101:

Declared cursor type Cursor is updatable or read-only?
Changes by the cursor are visible

in the result table?

Changes by other cursors or

processes are visible to the result

table?

NO SCROLL (result table is

materialized)
Read-only Not applicable No

NO SCROLL (result table is not

materialized)
Updatable Yes Yes

INSENSITIVE SCROLL Read-only Not applicable No

SENSITIVE STATIC SCROLL Updatable Yes

Depends on the explicitly or

implicitly specified sensitivity in

the FETCH clause

SENSITIVE DYNAMIC SCROLL Updatable Yes Yes

Scrollable Cursors

Fetch definition 101:

FETCH
Keyword in FETCH statement Cursor position when FETCH is executed

BEFORE Before the first row

FIRST or ABSOLUTE +1 On the first row

LAST or ABSOLUTE -1 On the last row

AFTER After the last row

ABSOLUTE
On an absolute row number, from before the first row forward or

from after the last row backward

RELATIVE
On the row that is forward or backward a relative number of rows

from the current row

CURRENT On the current row

PRIOR or RELATIVE -1 On the previous row

NEXT On the next row (default)

Scrollable Cursors

Pain Points (1|3):

While sensitive static scrollable cursors are open against a table, Db2 disallows reuse of
space in that table space to prevent the scrollable cursor from fetching newly inserted rows
that were not in the original result set.

Although this is normal, it can result in a seemingly false out-of-space indication. The
problem can be more noticeable in a data sharing environment with transactions that
access LOBs.

Scrollable Cursors

Pain Points (2|3):

In addition to the space reuse issue, the use of a sensitive static scrollable cursor in a data
sharing environment might also result in lock contention on INSERT statements if the
inserted objects are in the same buffer pool.

This situation applies regardless of whether the objects have sensitive static scrollable
cursors, and regardless of whether the objects contain any LOB columns.

You can minimize this problem by isolating objects that have a large volume of insert
activity so that they are in a dedicated buffer pool within the data sharing environment.

Scrollable Cursors

Pain Points (3|3):

And a final Pain Point that is squirreled away in the docu that can easily catch you out:

Db2 does not use an expression-based index (IOE) for queries that use sensitive static
cursors.

Questions & Answers

Thank You

Speaker: Roy Boxwell

Company: Software Engineering GmbH

Email Address: r.boxwell@seg.de

Session Code: E04

Please fill out your session evaluation before leaving!

